Predicting Forest Age Classes from High Spatial Resolution Remotely Sensed Imagery Using Voronoi Polygon Aggregation
نویسندگان
چکیده
Ef®cient identi®cation of forest age is useful for forest management and ecological applications. Here we propose a user-assisted method for determining forest age using high spatial resolution remotely sensed imagery. This method requires individual trees to be extracted from imagery and represented as points. We use a local maximum ®lter to generate points that are converted to Voronoi polygons. Properties of the Voronoi polygons are correlated with forest age and used to aggregate points (trees) into areas (stands) based on three forest age classes. Accuracy of the aggregation ranges from approximately 68% to 78% and identi®cation of the mature class is more consistent and accurate than the younger classes.
منابع مشابه
A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملObject based Information Extraction from High Resolution Satellite Imagery using eCognition
High resolution images offer rich contextual information, including spatial, spectral and contextual information. In order to extract the information from these high resolution images, we need to utilize the spatial and contextual information of an object and its surroundings. If pixel based approaches are applied to extract information from such remotely sensed data, only spectral information ...
متن کاملGaussian Mixture Model of Texture for Extracting Residential Area from High-resolution Remotely Sensed Imagery
Using high-resolution remotely sensed imagery to timely detect distribution and expansion of residential area is one of most important jobs of national 1:5 spatial database updating. In view of complicated spatial characters of residential area and working disable of current automatic interpretation methods based on spectral features on high-resolution remotely sensed imagery, a classifier base...
متن کاملSupporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery
Information needs associated with forest management and reporting requires data with a steadily increasing level of detail and temporal frequency. Remote sensing satellites commonly used for forest monitoring (eg, Landsat, SPOT) typically collect imagery with suffi cient temporal frequency, but lack the requisite spatial and categorical detail for some forest inventory information needs. Aerial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- GeoInformatica
دوره 8 شماره
صفحات -
تاریخ انتشار 2004